Non-Decreasing Prime Sequence

A prime number is a natural number which has exactly two distinct natural number divisors. First few prime numbers are: 2, 3, 5, 7, 11, 13, ... and so on.

A non decreasing prime sequence (NDPS) is a sequence of prime numbers where i^{th} element is not less than i-1th element for all i>1. The weight of a NDPS is the product of all numbers of the sequence. Here are some examples of NDPSs with their corresponding weights.

NDPS	Weight
2	2
2 5 13	130 (2 X 5 X 13)
2 3 97	582 (2 X 3 X 97)

An NDPS **a** is smaller than another NDPS **b**, if number of elements in **a** is smaller than the number of elements in **b**. If **a** and **b** has same number of elements then lexicographically smaller sequence is the smaller NDPS. For the list given above, $\{2\}$ is the smallest sequence because it has only one elements. $\{2 \ 5 \ 13\}$ and $\{2 \ 3 \ 97\}$ both have 3 elements, so $\{2 \ 3 \ 97\}$ is second smallest because it is lexicographically smaller than $\{2 \ 5 \ 13\}$.

For a given range (A, B), where A<=B, you have to find the Kth smallest NDPS between all the NDPSs having weights in between A and B(inclusive).

Input

Input will start with an integer T (T<=5000), the number of test cases. Each of the next T line will contain three integers A, B and K (2<=A<=B<=1000000). K is a positive integer and you can safely assume that at least K NDPSs exists in the given range.

Output

For each case, you have to output one line, case number followed by the K^{th} smallest NDPS between all the NDPSs having weights between A and B(inclusive). See sample output for exact format.

Sample Input

Output for Sample Input

3	Case 1: 2
2 10 1	Case 2: 2 2
2 10 5	Case 3: 2 2 2
2 10 9	